a2 United States Patent

Leach et al.

US009152498B2

US 9,152,498 B2
Oct. 6, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(62)

(60)

(1)

(52)

RAID STORAGE SYSTEMS HAVING ARRAYS
OF SOLID-STATE DRIVES AND METHODS
OF OPERATION

Applicant: OCZ STORAGE SOLUTIONS INC.,
San Jose, CA (US)

Inventors: Anthony Leach, Cheshire (GB); Franz
Michael Schuette, Colorado Springs,
CO (US)

Assignee: QCZ Storage Solutions, Inc., San Jose,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

Appl. No.: 14/520,413

Filed: Oct. 22,2014
Prior Publication Data
US 2015/0039971 Al Feb. 5, 2015

Related U.S. Application Data

Division of application No. 12/960,626, filed on Dec.
6, 2010, now Pat. No. 8,898,381.

Provisional application No. 61/267,473, filed on Dec.
8, 2009.

Int. Cl1.

GO6F 12/00 (2006.01)

GO6F 11/10 (2006.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC ... GO6F 11/1068 (2013.01); GOG6F 3/0619

(2013.01); GOGF 3/0647 (2013.01); GOGF
3/0689 (2013.01); GOGF 11/1008 (2013.01);
GO6F 11/108 (2013.01)
(58) Field of Classification Search

CPC ... GOG6F 3/06; GOG6F 12/00; GO6F 12/0607,
GO6F 12/0851
USPC ..c.ocevven. 711/100, 113, 114, 127, 154, 157

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,737,744 A * 4/1998 Callisonetal. ... 711/114
2004/0243739 Al* 12/2004 Spencer 710/22

* cited by examiner

Primary Examiner — Tuan Thai
(74) Attorney, Agent, or Firm — Hartman Global IP Law;
Gary M. Hartman; Michael D. Winter

(57) ABSTRACT

RAID storage systems and methods adapted to enable the use
of NAND flash-based solid-state drives. The RAID storage
system includes an array of solid-state drives and a controller
operating to combine the solid-state drives into a logical unit.
The controller utilizes data striping to form data stripe sets
comprising data (stripe) blocks that are written to individual
drives of the array, utilizes distributed parity to write parity
data of the data stripe sets to individual drives of the array, and
writes the data blocks and the parity data to different indi-
vidual drives of the array. The RAID storage system detects
the number of data blocks of at least one of the data stripe sets
and then, depending on the number of data blocks detected,
may invert bit values of the parity data or add a dummy data
value of “1” to the parity value.

10 Claims, 3 Drawing Sheets

Patity data

Data

Drive 4 37

2 3 4
RAID Level 5 (distributed parity)

U.S. Patent Oct. 6, 2015 Sheet 1 of 3 US 9,152,498 B2

Parity data
Data

pe
o

Drive 1 3

RAID Level b (distributed parity)

FIG. 1

U.S. Patent Oct. 6, 2015 Sheet 2 of 3 US 9,152,498 B2

(@)
A B
0 0
0 1
1 0
1 1
(b)
A B C
0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

FIG. 2

U.S. Patent Oct. 6, 2015 Sheet 3 of 3 US 9,152,498 B2

()
A B

0 0

0 1 0

1 0 0

1 1 L]

FIG. 3
A B

- owd Y O

S o P

US 9,152,498 B2

1
RAID STORAGE SYSTEMS HAVING ARRAYS
OF SOLID-STATE DRIVES AND METHODS
OF OPERATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a division patent application of co-pending United
States patent application Ser. No. 12/960,626, filed Dec. 6,
2010.

BACKGROUND OF THE INVENTION

The present invention generally relates to memory devices
for use with computers and other processing apparatuses.
More particularly, this invention relates to the use of solid-
state drives in combination with redundant arrays of indepen-
dent drives (RAID) configurations.

Mass storage devices such as advanced technology attach-
ment (ATA) drives and small computer system interface
(SCSI) drives are rapidly adopting non-volatile memory tech-
nology, such as flash memory or another emerging solid-state
memory technology including phase change memory (PCM),
resistive random access memory (RRAM), magnetoresistive
random access memory (MRAM), ferromagnetic random
access memory (FRAM), organic memories, or nanotechnol-
ogy-based storage media such as carbon nanofiber/nanotube-
based substrates. Currently the most common solid-state
technology uses NAND flash memory components as inex-
pensive storage memory, often in a form commonly referred
to as a solid-state drive (SSD).

Briefly, flash memory components store information in an
array of floating-gate transistors, referred to as cells. The cell
ofa NAND flash memory component has a top gate (TG) and
a floating gate (FG), the latter being sandwiched between the
top gate and the channel of the cell. The floating gate is
separated from the channel by a layer of tunnel oxide. Data
are stored in (written to) a NAND flash cell in the form of a
charge on the floating gate which, in turn, defines the channel
properties of the NAND flash cell by either augmenting or
opposing a charge on the top gate. This charge on the floating
gateis achieved by applying a programming voltage to the top
gate. Data are erased from a NAND flash cell by applying an
erase voltage to the device substrate, which then pulls elec-
trons from the floating gate. The charging (programming) of
the floating gate is unidirectional, that is, programming can
only inject electrons into the floating gate, but not release
them.

NAND flash cells are organized in what are commonly
referred to as pages, which in turn are organized in what are
referred to as memory blocks (or sectors). Each block is a
predetermined section of the NAND flash memory compo-
nent. A NAND flash memory component allows data to be
stored, retrieved and erased on a block-by-block basis. For
example, erasing cells is described above as involving the
application of a positive voltage to the device substrate, which
does not allow isolation of individual cells or even pages, but
must be done on a per block basis. As a result, the minimum
erasable size is an entire block, and erasing must be done
every time a cell is being re-written.

In stand-alone drives, the above-noted “pre-erase require-
ment” of the NAND data structure can cause performance
degradation. However, with the use of house-keeping func-
tions, such as coalescing and pro-actively erasing blocks con-
taining old or obsolete data (garbage collection) and subse-
quent reclaiming of the blocks through TRIM functionality, a
reasonable status quo can be maintained over most of the life

10

15

20

25

30

35

40

45

50

55

60

65

2

span of a drive. In this context, it is important to note that as
many blocks as possible have to be in the “erased state” in
order to allow fast write access.

The “pre-erase requirement” of the NAND data structure
poses an impediment to the use of NAND flash memory
components in redundant arrays of independent drives (or
devices), commonly referred to as RAID. A typical imple-
mentation of RAID technology employs a RAID controller
for combining an array of disk drives into a logical unit where
all drives in the array are interdependent. Most implementa-
tions of RAID technology employ data striping, which is a
known technique for segmenting logically sequential data
when storing data to different physical storage devices. The
most prevalent forms of true RAID (not counting RAID Level
0 or Level 1) are RAID Level 5 and RAID Level 6. RAID
Level 5 typically uses Hamming code based on XOR calcu-
lations to generate the checksum of corresponding bit values
across the array. In contrast to, for example, RAID Level 4,
which uses the same principle and stores the parity data on a
dedicated drive, RAID Level 5 uses distributed parity, mean-
ing that the parity values are stored in blocks across all drives
belonging to the array using a rotating scheme. As an
example, a Level S RAID configuration is represented in FIG.
1 as using three data blocks and one parity block for each set
of stored data, resulting in four drives (devices).

As known in the art, parity calculations using the XOR
operator are widely used to provide fault tolerance in a given
set of data. These calculations can be carried out at the system
level with a central processing unit (CPU) of a host computer,
or by a dedicated microprocessor. As represented in FIG.
2(a), the result of performing the XOR calculation on two
different bit values (O and 1, or 1 and 0) is 1, whereas the result
is 0 for two identical bit values (1’s or 0’s). By extension, any
even number of identical bit values (1 or 0) will result in a
parity value of 0. In the case of hard disk drives or volatile
memory systems (such as SDRAM), this particular feature
has no bearing on functionality. However, in the context of
NAND-based solid-state drives, and in particular because of
their unidirectional programming mode of operation, the
XOR result can pose a severe problem. As represented in FI1G.
2(b), if a RAID Level 5 configuration contains an even num-
ber of drives, then the parity calculation is carried out across
an odd number of blocks belonging to a stripe. In contrast,
FIG. 2(a) evidences that the parity calculation is carried out
across an even number of blocks belonging to a stripe if the
RAID Level 5 configuration contains an odd number of
drives. For a RAID Level 5 configuration containing NAND
flash-based solid-state drives, if a drive erases or else writes
“1’s” to all bits, the corresponding parity block is pro-
grammed as all “0’s.” Because of their unidirectional pro-
gramming mode, NAND flash-based drives do not allow any
further update of the block without selectively erasing the
particular block on the drive having the parity data for a given
stripe. The same problem occurs in all cases where partial
pages are being written, in that typically the part of the page
that is “not written to” is programmed to all “1’s” or FF byte
values. Consequently, the parity block will have all corre-
sponding entries programmed to “0.” If the unused part of the
page is updated on any block, the parity block must also be
updated. However, this is not possible unless the entire data
set is moved to a fresh block, starting from “FF” values.

The situation described above can cause an excessive num-
ber of unnecessary program/erase cycles for blocks used for
parity values. Aside from slowing down the write speed, the
result can be excessive wear on these drives. Particularly in
the case of data updates, the stripe block allocation across the
different devices in the array may not change. Therefore, the

US 9,152,498 B2

3

drive holding the respective parity data will be rewritten with
new parity data to new blocks, leaving all previously used
blocks programmed to “00,” which constitutes the worst case
scenario for wear, programming and erase time.

In view of the problem outlined above, RAID Level 5 and
also RAID Level 6 (dual distributed parity) are effectively
crippled in terms of implementation with NAND-based solid-
state drives. Therefore, new strategies are needed to adapt
these and other RAID configurations using parity calcula-
tions for use with NAND flash-based solid-state drives, as
well as any other solid-state storage media with similar
behavioral characteristics.

BRIEF SUMMARY OF THE INVENTION

The present invention discloses RAID storage systems and
methods adapted to enable the use of NAND flash-based
solid-state drives.

According to one aspect of the invention, a RAID storage
system is provided that includes an array of solid-state drives
and a controller operating to combine the array of solid-state
drives into a logical unit. Furthermore, the controller utilizes
data striping to segment data to form data stripe sets compris-
ing data (stripe) blocks that are written to individual drives of
the array of solid-state drives, utilizes distributed parity to
write parity data of the data stripe sets to individual drives of
the array of solid-state drives, and writes the data blocks and
the parity data to different individual drives of the array of
solid-state drives. The RAID storage system further includes
means for detecting the number of data blocks of at least one
of'the data stripe sets, and means for inverting bit values of the
parity data depending on the number of data blocks detected
by the detecting means.

Another aspect of the invention is the controller of the
RAID storage system described above, and particularly a
controller that comprises the detecting and/or inverting
means.

According to a third aspect of the invention, a method is
provided for operating a RAID storage system comprising an
array of solid-state drives and a controller operating to com-
bine the array of solid-state drives into a logical unit, utilize
data striping to segment data to form data stripe sets compris-
ing data (stripe) blocks that are written to individual drives of
the array of solid-state drives, utilize distributed parity to
write parity data of the data stripe sets to individual drives of
the array of solid-state drives, and write the data blocks and
the parity data to different individual drives of the array of
solid-state drives. The method includes detecting the number
of'data blocks ofat least one of the data stripe sets, calculating
the parity data corresponding to the data blocks for each data
stripe set, and either writing the calculated parity data to a
parity block on an individual drive of the array of solid-state
drives if the number of detected data blocks is odd, or invert-
ing bit values of the calculated parity data to yield inverted
parity data that are then written to a parity block on an indi-
vidual drive of the array of solid-state drives if the number of
detected data blocks is even.

Other aspects of the invention include RAID storage sys-
tems and methods that make use of dummy bit values instead
of inverting bit values of parity data. Such a RAID storage
system includes an array of solid-state drives and a controller
operating to combine the array of solid-state drives into a
logical unit. The controller utilizes data striping to segment
data to form data stripe sets comprising data (stripe) blocks
that are written to individual drives of the array of solid-state
drives, utilizes distributed parity to write parity data of the
data stripe sets to individual drives of the array of solid-state

10

15

20

25

30

35

40

45

50

55

60

65

4

drives, and writes the data blocks and the parity data to dif-
ferent individual drives of the array of solid-state drives. The
RAID storage system further includes means for detecting the
number of data blocks of at least one of the data stripe sets,
and means for calculating the parity data corresponding to the
data blocks for each data stripe set by adding a dummy bit
value to the parity data if the number of data blocks detected
by the detecting means is an even number.

A method that makes use of dummy bit values entails
operating a RAID storage system comprising an array of
solid-state drives and a controller operating to combine the
array of solid-state drives into a logical unit, utilize data
striping to segment data to form data (stripe) stripe sets com-
prising data blocks that are written to individual drives of the
array of solid-state drives, utilize distributed parity to write
parity data of the data stripe sets to individual drives of the
array of solid-state drives, and write the data blocks and the
parity data to different individual drives of the array of solid-
state drives. The method further includes detecting the num-
ber of data blocks of at least one of the data stripe sets, and
then calculating the parity data corresponding to the data
blocks for each data stripe set by adding a dummy bit value to
the parity data if the number of data blocks detected by the
detecting means is an even number.

A technical effect of the invention is the ability of a RAID
storage system to be aware of the number of devices within its
array of storage devices and then, based on whether the num-
ber of drives that are part of the data striping is even or odd,
match the erased/partially-written/fully-programmed status
of'stripe blocks with the same status of the parity block(s). As
such, the invention is capable of adapting RAID configura-
tions using parity calculations for use with NAND flash-
based solid-state drives, as well as other solid-state storage
media with similar behavioral characteristics.

Other aspects and advantages of the invention will be better
appreciated from the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 represents a Level 5 RAID configuration containing
four drives (devices), in which case three data blocks and one
parity block are used for each set of stored data.

FIG. 2 shows truth tables of parity calculations for (a) odd
and (b) even numbers of devices as used in a RAID Level 5
configuration of the prior art.

FIG. 3 shows a truth table of parity calculations for an odd
number of devices similar to the truth table of FIG. 2(a), but
with inversion of the parity data in accordance with an
embodiment of the present invention.

FIG. 4 shows a truth table of parity calculations for an even
number of devices similar to the truth table of FIG. 3, but with
the addition of a dummy value of 1 to the data set for parity
calculation in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

The current invention is directed to solving problems that
can arise when attempting to use NAND flash-based solid-
state drives (or any other solid-state storage media with simi-
lar behavioral characteristics) in a RAID storage system using
parity calculations, which may be carried out by a dedicated
microprocessor, or at the system level such as with the central
processing unit (CPU) of a host computer. Similar to prior art
implementations of RAID technologies, RAID storage sys-
tems employed with the present invention preferably employ
an array of memory drives (devices) and a RAID controller

US 9,152,498 B2

5

that combines the array of drives into a logical unit and
utilizes data striping to segment data stored on the drives, as
represented in FIG. 1. RAID Level 5 configurations are of
particular interest to the present invention, though the inven-
tion is applicable to other RAID configurations that use data
striping with parity and write the data and parity values to
different drives. Examples include RAID Level 6 configura-
tions, characterized by two parity blocks that allow for mul-
tiple drive failure redundancy, and RAID Level 4 configura-
tions characterized by a dedicated parity drive.

As previously described in reference to FIG. 2, a particular
issue arises with RAID configurations using an even number
of data stripe sets as a result of employing an odd number of
drives (devices). In this case, the erasing of blocks or partial
page writes using FF values for the “un-used” part of the page
will cause the parity values for the corresponding redundancy
stripes to be 00. In the case of a NAND flash-based solid-state
drives (devices), this means that the respective cells in the
redundancy blocks are at their “fullest” programmed values
and cannot be programmed to any other values without under-
going a complete block erase first. As previously noted, this
situation can lead to excessive and unnecessary program/
erase cycles for blocks used for parity values and, aside from
slowing down the write speed, will also cause excessive wear
on these drives. A similar situation could occur in the case of
an “erase” or any other procedure that writes FF values to a
drive as a prerequisite for subsequent programmability. If the
controller is applying RAID policies to the drive preparation,
which, in the case of software utilities is a likely scenario,
then it will leave the parity blocks programmed to “00” which
means they are completely unusable unless they are erased
first. Also in the case of software-based drive management,
for example, garbage collection, TRIM and erase, execution
of'these maintenance routines will leave the “parity” blocks at
FF byte values rather than fully programmed to 00 values.

In accordance with an embodiment of the present inven-
tion, a method for circumventing the above-noted problem is
to be aware of the number of data (stripe) blocks of the sets of
data stripes being allocated and written across the individual
drives of the array. For example, the number of drives within
the drive array of a RAID storage system can be detected. If
the number of drives minus parity allocations is odd (corre-
sponding to the number of data blocks of each data stripe set),
then there is no need to change anything. However, if the
number of drives minus parity allocations is even, the present
invention provides for inverting the parity values, meaning
that a 0 becomes a 1 and vice-versa. FIG. 3 represents the
result of such an operation performed with the example of
FIG. 2(a) foraRAID configuration containing an odd number
of drives, which after accounting for parity allocations results
in the parity calculation being carried out across an even
number of blocks belonging to a data stripe. As a result of
inverting the parity values, the respective cells can be imme-
diately reprogrammed to a “lower value” In this case, a
partial page write, with the “unused” part of the page pro-
grammed to “1”” will also result in a parity value of “1” being
written to the parity sector. As such, the status (erased, par-
tially-written, or fully-programmed) of the data blocks of a
given data stripe can be matched with the same status of the
parity block of the data stripe, reducing the number of pro-
gram/erase cycles performed on the parity block that would
lead to excessive and premature wear of the drives.

Inversion of the parity values can be done by performing a
simple subtraction operation, where the inverted parity value
(Pi) is 1 minus the parity result (Pr):

Pi=1-Pr.

10

30

35

40

45

55

6

Both the detection of the number of drives (or otherwise the
number of data blocks of each data stripe set) and the inver-
sion of parity values can be performed at the system level with
the RAID controller of the RAID storage system. Alterna-
tively, it is foreseeable that parity values could be inverted
using separate inversion circuitry, as well known in the art. As
nonlimiting examples, parity inversion could be performed
with a separate dedicated microprocessor or software, or sim-
ply a latch that inverts the parity value. Such operations are
routinely performed in, for example, dynamic bus inversion,
and therefore will not be discussed in any detail here.

Another method for circumventing the problem of imple-
menting RAID configurations involving distributed parity
with NAND-based solid-state drives is represented in FIG. 4
as the addition of a “dummy” data value (for example, 1) as
part of a virtual drive for every bit for which the parity is
calculated. In effect, a RAID configuration containing an odd
number of devices (similar to FIG. 3) appears to contain an
even number of devices for purposes of the parity calculation.
As such, similar to the previously described approach of FIG.
3, implementing the approach of FIG. 4 also involves detect-
ing the number of data blocks of the data stripe sets, for
example, be detecting the number of drives within the array of
a RAID storage system and subtracting the number of drives
for parity allocations. The parity data are then calculated for
the data blocks of each data stripe set by adding a dummy bit
value to the parity data if the number of data blocks detected
by the detecting means is an even number.

While the invention has been described in terms of specific
embodiments, it is apparent that other forms could be adopted
by one skilled in the art. For example, the invention could be
implemented with RAID configurations other than Levels 5
and 6, and implemented with solid-state memory components
other than NAND flash memory devices. Furthermore, it is
foreseeable that the memory devices could be physical and/or
logical drives, as is known with commercially available
RAID storage systems. Therefore, the scope of the invention
is to be limited only by the following claims.

The invention claimed is:

1. A method of operating a RAID storage system compris-
ing an array of solid-state drives and a controller operating to
combine the array of solid-state drives into a logical unit,
utilize data striping to segment data to form data stripe sets
comprising data blocks that are written to individual drives of
the array of solid-state drives, utilize distributed parity to
write parity data of the data stripe sets to individual drives of
the array of solid-state drives, and write the data blocks and
the parity data to different individual drives of the array of
solid-state drives, the method comprising:

detecting the number of data blocks of at least one of the

data stripe sets;

calculating the parity data corresponding to the data blocks

for each data stripe set; and

either writing the calculated parity data to a parity block on

an individual drive of the array of solid-state drives if the
number of detected data blocks is odd, or inverting bit
values of the calculated parity data to yield inverted
parity data that are then written to a parity block on an
individual drive of the array of solid-state drives if the
number of detected data blocks is even.

2. The method of claim 1, wherein the calculating step is
carried out at a system level of the RAID storage system.

3. The method of claim 1, wherein the calculating step is
carried out by a dedicated microprocessor within the RAID
storage system.

US 9,152,498 B2

7

4. The method of claim 1, wherein the inverting step is
performed by software operating within the RAID storage
system.

5. The method of claim 1, wherein the inverting step is
performed by a dedicated inversion circuitry within the RAID
storage system.

6. The method of claim 1, wherein the detecting step is
performed by the controller.

7. The method of claim 1, wherein the inverting step is
performed by the controller.

8. The method of claim 1, wherein the detecting and invert-
ing steps are performed by the controller.

9. A RAID storage system comprising:

an array of solid-state drives;

a controller operating to combine the array of solid-state
drives into a logical unit, utilize data striping to segment
data to form data stripe sets comprising data blocks that
are written to individual drives of the array of solid-state
drives, utilize distributed parity to write parity data of the
data stripe sets to individual drives of the array of solid-
state drives, and write the data blocks and the parity data
to different individual drives of the array of solid-state
drives;

means for detecting the number of data blocks of at least
one of the data stripe sets; and

means for calculating the parity data corresponding to the
data blocks for each data stripe set by adding a dummy
bit value to the parity data if the number of data blocks

8

detected by the detecting means is an even number, and
not adding the dummy bit value to the parity data if the
number of data blocks detected by the detecting means is
an odd number;

5 wherein the controller writes the calculated parity datato a
parity block on an individual drive of the array of solid-
state drives.

10. A method of operating a RAID storage system com-
prising an array of solid-state drives and a controller operat-
ing to combine the array of solid-state drives into a logical
unit, utilize data striping to segment data to form data stripe
sets comprising data blocks that are written to individual
drives of the array of solid-state drives, utilize distributed
parity to write parity data of the data stripe sets to individual
drives of the array of solid-state drives, and write the data
blocks and the parity data to different individual drives of the
array of solid-state drives, the method comprising:

detecting the number of data blocks of at least one of the

data stripe sets; and

calculating the parity data corresponding to the data blocks

for each data stripe set by adding a dummy bit value to
the parity data if the number of data blocks is an even
number, and not adding the dummy bit value to the
parity data if the number of data blocks is an odd num-
ber;

writing the calculated parity data to a parity block on an

individual drive of the array of solid-state drives.

10

15

20

25

#* #* #* #* #*

